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Abstract

This paper describes defe d compiayfion, an alternative and complemeai to compile-time program
analysis and optimization. By deferring aspects of compieation to run time, exact information
about programs cern be exploited, leading to greater opportunities for code improvement. This is
in contrast to the use of static analyses, which are inherently conservative.

Deferred compilation automates the translation of ordinary programs into native machine code
that performs fast optimization and native-code generation at run time. Automation is obtained
through the use of a compile-time staging analysJi, which determines the portions of a program
that may be safely and profitably compiled at run time. Fast run-time optimization is obtained
by trading space for time: compile-time specialization yields numerous run-time code generators,
each customized to optimize a small portion of the source program based on run-time information.
Implementation strategies developed for a prototype compiler are discussed, and the results of
preliminary experiments demonstrating significant overall speedup are presented.
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1Introduction

bmaa ceinpaw orpmasati techmlqsms dsread M static analysis to determine invWaxint Abou
a program's nm-Ums behavior A. a noshl, a pee "ea of research has been nvested wm the

d~~ve~~epea~t H1ulmapoce owsai pg-pa analyuis, particuarly am the meas odata""A"
an1aly"s, abstrat aewraia n mnenar am of type winfuace. Despete good propress,
such imialyses mand to he ezcesuvd cmneemave in practice, thws Making it diocult Wora compiler
to achieve tboreu, eptiMisbeta of programs. Thois s, Of couses, a fundamenal Problmian ae
aut aspects of program run- time bheavior wre andeciable Also, as a practical matter, further

comproase am premise amat h. =ade in order to cc"e with the complexity and insacidency of
smay anaysis alguaithms.

A& altarsaiv. approach is to delar at leaot some of the analysis &ad optimisation (and therefore
also code goneratima) to ran time. While this does amt avoid the fmmdamomal problems of undecid-
ability and iaoffcusy, it doe" main poslsk blete use of nean-ime values in improving code quality.
This is an old idea that has heen applied in nuoy differeal ways. For example, for regular expbes-
Lion search, Thompson describes what essenatially amounts to a compiler for regular expressaces.
A propian can invoke this compile &I run tame to obtain machine code optimisd for a specific
regula axpessies (Thoi"i. A s&mAar appreoac bas also been applied to hitblt [P LM~) mad to the
implemmatlos of operating system services [MasS2, M78SOJ. For general programmuing, Keppel,
Eggers, and Henry have studied several numnral methods for obtainin such "application-specific"
compilers, and they show that good results are possible for realistic C programs (KE1193].

Thuse awe other ways to improve program performance using run-time information. For exam-
ple, the compiler can anrange for programs to collect nao-time data during development and test-
ing, and thowanus thes collected proffle information in optimizing the coda for final delivery (Wagl~l.
Koopema &and Lee obtained imrvms in the performance of a lazy functional language by
implaemening graph reduction sas ef-modif~ying code [KLS92). And, of cour"e, there have been
countless other applications of selffmodifying code.

In this paper, we report on our experience with a new approach to generating optimised code at
run time. We have implemented a prototype compiler, which we call FAnl us, that can automatically
compile a general program into RISC machine code that in turn generates optimized machine
code at run time. There are sevexal notable oxample of complers for object-ouiented languages
that perform aspects of compilation at run time, including the Smalltalk-8O system by Deutsch
and Schiffaman [DS&4] and the SELF compiler by Chambers and Ungar (CU$9). The approach
we have taken differs in a number of crucial ways. Perhaps most fundamentally, we compile a
functional programminng language and hence, are able to take advantage of previously developed
techn~iques for comupiling and transforming functional programs, including aspects of offline partial
evaluation JJSS89, .lGS931. This also facilitates the development of an automatic staging analysis
that allows code to be dynamically generated for any part of a program, rather than being restricted
to particular points such as method (procedur) invocations.

Other salient characteristics of our approach, which We term deferred compilation, are as follows-

"* It is automastic. No proprammingor proprammer intervention is required. An automatic stag-
ing analysis determines those parts of the program to be subjected to run-time compilation,
with or without the guidance of the programmier.

"* It is general. Dynamic code generation is not limited to particular constructs or code tem-
plates. Furthermore, many standard compilation techniques, such as register allocation and
minking, can be employed.



0 Wt PD No mawal compilation or processwa of the source pINrep occurs at run time
Rather. ea&& part at the compiled cods that pafersas rum-tme code guaausem is speciaised
to oe mian eWd smwaa code for a Ua portion, of the imp" ppeem.

In preliminary oxprwiw s, '0 have found tW the verhead of dA" A compilistion is e•tn
quite smll when comparso to the perfomame pm. Plmathumon, we have sucoauteced sae
deW tradeDoh inU cOAUideg which aslpetU Of oimmUaae and code gineaLaImO should b per-
feoned statically and which should be derred to run time. We am some encouaagsi "pW thaA
deferred compilation can be pratical, and fad that there s muck further work to be dome.

To introduce defeIre compilation, we bgin witk simple example that iliusUato the basic
points. Thea in Sect ion we give am ovuview of some strasgles and techiques for defered
compiaior Our deire to keep the cost of run-time code gemeratiom as low as possible Ieads
to several important pracucal consideratlons. In Section 4 we describe some of the dectils of a
prototype implemeantation and present the results of preliminary experiments with the system.
This is followed by sections on the secondary costs of run-time code generation and the connections
between deferred compilation and partial evaluafion.

2 An Example

A simple example illustrates some of the techniques employed by deferred compilation. Consider
a pboram that contains a (tail-recursive) defnition of the exponentiation function:

power (ep. b"e, accun)
if exp s 0 then accun
else power(eap - 1, base. accun * bass•)

... power (e. b, 1) ...

A conventional compilation of power mSht yield the following machine code:1

power: beq rl, rO, Li ; it exp = 0 Soto LI
sub ri, rl, I ; exp = ezp - I
ml r3. r3, r2 accus = acc=n * base
iup power ; goto power

Lt: move rt, r3 ; result * accus
relt retu-n

Suppose the program calls power repeatedly, but with the first argument changig more slowly
than the second argument. This would arise, for example, in a loop where each iteration computes
a new base and cals power without varying the exponent. One can also imagine a curried version
of power which is applied to an exponent value and then passed to a mapping function. In such
situations, we say that the first argument is computed in an esWi stage and the second argument
is computed in a ls~e stage.

A •.agag a•nahi can be used to identify such computation stages and label those subexpres-
sions in the program that depend only on the early arguments, as opposed to those that require
late argument values. In the case of just two stages, this labeling of early and late computations

'For simplicily of presentsaion, we ausme an idealised RISC uchitectue with no dclay slots; see Appeadix A.
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correspoinls prec.sely to a binding time aa ,and annoutation (..ri9 %.'%'I! and in fact (jut

3-t, totp# . miji.er nclorp-rstest a binding time anajivaet

Eariv comp~itat.u.ia are turn1oiled .n the avrinsJ was. but late computations ate translated mn.,

code thi~t emits the cot sp~mnding f'.trutfl h ins. at run tino In this Pia*rtpie, since the exponent a
av&A:&are at an earl' stagte. thie -md.:;onj& test and subtratt~i..n express..mns ame c.ý.mpiird ntir-naj..~
,).t The e ,rrnpiAt;In of 0,r mi~t ipi( A~ iofl espresaaitr ts deferred to non tme In the %imp cot form

Of tIef#!Trd Orn~ptaattn. we m.Iht obtsan the foiUswino code

Pogessa b04 :1. r0. Lt

atub rt. rl . I
eamt Ml 03. r3. r2

imp powgen
em4111it move r1. ri

riot

Note 'hat tnt *rniy dAtierence between power arid pooegem is that the muiltipliaation ,nstriuction
is eautted perhaps many tunes) tnatea4 of bewng executed, as is the instruction that move* the
accurniulat-r t,) the result register When cauleil with sip S. posigen ror'pietelY unr,,ih ihe ,,bqop

and generates code with all -constants' folded and all "dead code" eliminated

Sul. r3, r3. r2

Sul :3. r3. r2

Mul r3. r3. r2

Miii 0. r3. r2

miii r3. r3. r2

move r1i. r3

Deferred compilation can be fasit enough to pay off quickly, On a typical RISC architecture a
nixed- argu~ment instruction can be emitted in as few as four cycles (swe Appendix A). Under this
"asumption the costs incurred by poegen are recovered after only three iterations of the rnantime-
generated code when exp = 5.

\tak~ng deferred cnmpdlatinn practical for a wide variety of programs is more of a challenge
than this simple example might imply. Here we see that rnw-time loop untrollng can be highly
profitable, but clearly there asre LUrruts; it pursued too aggresively, the rnw-time overhead may
exceed the performance gain of the dynamiucally generated code. Another compLication stem@ from
the fact that teal-world programs often contain many more than the two stages of computation
exhibited by this example, a large number of which may benefit from rnw-time optimization. Thus,
a conventional binding-time analysis is not, in general, powerul enough for out needs.

The next section discusses these issues in more detail and proposes several strategies for ad-
dressing them. We also examine how a wider range of optimaszations and code generation techniques
can be adapted to deferred compilation. The effectiveness of some of these techniques is examnined
in the context of a more realistic example in Section 4.

'We use the pseiido..nstruction amit to simplify the presentation. It expands nitn a sequence of instructions that
aLlocases spae in a dynamic code segmew. builds the frerese teaito o(" amisae~ctmso from its opcde and argumsents.
and finalfly writes the instruction to the alJ',cated space. In this example the argumnents to the emitte sissruction
ate fized; the Aris emit creates Nni1 r3. r]. W., reigardiets o( the current values 9( r2 end r3.
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3 Strategies for Deferred Compilation

The exa~mple above, though u~nrealitically simple, illustrates the basic elemtents of defer-red corn-
paia&t.,n Fiist, a stagwng analysis is used to determine the stage at which each subexpressio'n of
it pr.,ýframn is computed. In ester.,e, this identifies data and control dependencies in the program
A~ .i revta~i .n wh-och stages rnu time optimization may be of benefit. Second, no general-purpose

1 npiation )c,7,r% at nin time. Instead, parts of the source program are compiled into. special.
:pr e ..t.1e gKererators ie ., posgen 1, each customized to optimizing and generating code based

I'L ra Uime W4Lues.

3 1 Stages of Computation

-iiioites ýA com~putat ion occur natura.Ii in both functiona~l and imperative programs. For
Sa s.tr-r currired runci-un t of tvpe a -~ 3 -- is ap--ed to an argument x, a closure

W, - 'L. e -1 ..pe J.i * Iai typically be conhtructr efore computations involving
&JILini arguments pr, "d- It may be profitabio to generate m aized code for f (z) If it will

.. ai..e :n4.. 1_nr oeferrCd cumnplIation Can therefore be viewed as an a~lternative to the
ýýnvrnt.,.nai .rnp~rmentLation if closures.]

-::..t -&f .. ~e~h )<Lý6f% .n jprograms with nested loops. The outer loop index is always
')r; .-ro rsecut.nK ii.ner 1&uups, and substantial benefits might be obtained by specializ-

.ýg 11Aef .14p t-. a~i .. e at each iteration. More deeply nested loops lead to more stages of
mputat.4 n

C iTipot~ii.:i stag~es arise naLtu.inai from ither programming language constructs. Macros in
horme isi..I ,t~er :anguagrs are early computation stages that have been manually identified by

"ne Prf"Aanazner. iaiacro expansion performs these computations before compiler optimizations are
&;~fIn ýisi4J~Ird %1L the phase distinttion property o( the modules sublanguage guarantees

t.liat afri(flmflts to futictors are available at ant earlier stage than argumrents to functions 111M.N9Oi.
Hence, 4erý, refd fomnpi~ation (LI be used to compile functors into code that *ill generate optimized
function code at functor-application time. Fiinctor application is similar to the linking of object
rtote in envent.onal !angiages, the speed of which is not & high priority, so deferring highly
aggressive optirrusations to this stage appears practical 1HBHM931. Link-tirme optimization has
46.o hevi ,t Alie,1 by I~rvasta%-4 and Wall SW93'.

In pracirce, pro~gramrmers often arrange for computations to be staged so that the costs of
rar~v computations can bte amortizted over many late computations 'iCPW931. For example, in
a itmandard MtL implementation of a network cotmmunications *ystem, Biagioni et at. [BHL931
Aesirihe theP structnre of a send proc-dure with the type

send :connection )o "Os~age -), unit

The computation 's staged so that send analyzes the zoanect Lon and then selects one of several
possi~le rnei~iage sientfing proeediires (or type message -, unit). Since many messages are usually
sent con a connection, this allowis the cost of cennection- specific isrocessing to be amort'sed over all
of the message sends. Defirred compilation can exploit such staging even if it is not explicit in the
proraKrm text.

IAppel h"n made a sanuiastabobaewisto. App&?', mmd aM& code' ciee.se beir bees pmeo~eed by Feeley &ad
Lospalmo FL)2'
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We have restricted our attention to two computation stages in this paper in order to simplify the
presenta-k'n. In general, however, programs exhibit many more stages, and deferred compilation
can in principle exploit an arbitrary number. Consider the case of a function of three arguments,
f'r.y. z), in which :he argument x changes more slowly than y which in turn changes more slowly
tha,-n z. In this case it ma., be profitable to identify three computation stages (call them "early,"
"'rmiddle," and "late"i' and generate code for an fgen function that, given the f.rst argument,
;enerates the code of another specialized code generator.

3.2 Staging Analysis

Programs can have many stages of computation, and so a key problem is how to identify those
,or which deferred compilation will be profitable. This is similar to the problem of deciding where

:o :nine proce,; --s in conventional compilation 'CHT9]1 and the automatic determination of
spvc~a',zation p.;,.t, during partial evaluation 'JGS93, BD9•V. But as we have seen, syntactic
:eatures of programming languages often provide clear indications of stages that can be usefully
iub~ected to deferred compilation. In some eases the use of programmer-supplied hints, such as
the use of curri-d function syntax, would also be useful.

Once useful program stages are identified, each subexpression of the program can be analyzed
to determine (approximately) to what stage it belongs. This is essentially a dependency analysis: a
iubexpression that only depends upon values computed at or before stage ns computes a value that
.also belongs to stage n. Although this is conceptually simple, approximations must be made so that
tz'e stage's of computations involving recursion can be finitely computed. Hence, this propagation
,of s'aging information is best accomplished via a dataflow analysis or abstract interpretation.
Of co-rse, since the analysis is necessarily approximate, ear!y stages might be assigned to some
ex-iressions that are actually late, and tice versa. Optimization opportunities are lost in the
.urmer case, and unne,.essary run-time code generation occurs in the latter case. Hence, refining
the precision of staging analysis is of funoarnental importance.

Further techxA,;&al details of the staging analys.s problem are beyond the scope of this paper,
but we refer the reader to the literature on conventional binding-time analysis [JSS99, Con931,
which is precisely a 4taging analysis for the special case of two stages. We have, for the time
being, restricted uur attention to two stages, and we use a conventional binding-time analyzer in
our prototype compiler with good results (see Section 4). Note, however, that in programs where,
there are more than two useful stages, a binding-time analysis forces distinct stages to be merged,
thus causing opportunities for run-time code generation to be lost. To gain m...ximurn benefit
from deferred compilation, a generalization of binding-time analysis to an arbitrary number of
computation stages is required.

3.3 Limitations of Static Specialization

The examples mentioned earlier showed some of the circumstances in which computation stages
can be explnited by a compiler. We have yet to explain, however, why run-time compilation is
needed. To see this, conmider the 'Iternative of using a source-to-source transformation instead
of deferred compilation. For the power example, an effect similar to deferred compilation can be
obtained by transforming power into the following code: 4

nSth(. (so., .... s.)) yields s.. the ,,h element of.a tuple)



possen(exp)
nth (exp, (lambda (base) i,

lambda (base) base,
lambda (base) base * base,
lambda (base) base * base * base,

This definition of posgen can be obtained by creating a table of specialized versions of power,
eath of which is created by choosing a value for .xp from the set {0, 1,..., k} and then applying a
partial evaluator 1Bon93j to power and exp. Similar transformations might also be obtained by ap-

plying staging transformation [JS861, program bifurcation [DBV91], or procedure cloning [CHK93].
In either case, highly optimized definitions of the specialized functions can be obtained, which can

then be compiled into high-quality machine code. Hence, one might expect this approach to be
useful in the same situations as deferred compilation.

However, there are two practical problems in performing such a transformation automatically.
First of all, there is the matter of choosing the set of values on which to specialize. In powgen, for
example, there is no guarantee that the set (0, k ..... k} is a good one, since the range of exponents
that will be supplied at run time usually cannot be predicted. In fact, the specialization would not
in general be on simple integer values, but possibly on arbitrary data structures.

A second problem is that all of the specialized functions must appear in the transformed source
prognun. This incurs a serious cost in space usage, and iL wasteful since only a few of the functions
mright he used in a single pr-ogram execution. In practice, a relatively small limit must be placed
on the number of specialized functions created at compile time (represented by the constant k in
the above example).

Hence, a key aspect of deferred compilation is to arrange for specialization to occur "on demand"
(or "just in time"). Furthermore, our desire to minimize the cost of run-time code generation leads
us to specialize the compilation process itself. In other words, we wish to avoid the overhead
rf manipulating source programs, which one finds in a general compiler, and instead create code
generators Lhat are specialized to optimizing a fixed piece of code based on run-time values.

One can consider incorporating conventional compilaition techniques into specialized run-time
code generators. In fact, one of the key design issues in deferred compilation is deciding how to
apportion the costs of optimnixation and code generation between compile time and run time. In
the next section we consider the particular case of register allocation.

3.4 Regis%'er Allocation for Deferred Compilation

Conventional compilers often use graph-coloring algorithms to Assign variables to a limited number
of registers :Cha82, CH841. An intfefeven gmph is constructed, with nodes representing the
lifet;me ranges of variables and edges indicating where these ranges intersect. Any K-coloring of
the interference graph is ther.fore a valid assignment of the variables to K registers. This section
describes how such techniques can be applied when compilation is deferred.

3.4.1 Compiie-Time Register Allocation

We first consider a strategy for performing all register allocation at compile time. The significant
romplication is that different stages in a program can use the same set of registers because their

execution is not interleaved. For example, the pougen function presented in Section 2 can exploit

6



the fact that computations involving the exponent and base belong to different program stages by

...;signing those variables to the same register:

powgen: beq ri. rO. LI
sub ri. ri. I
emit mul r2, r2. ri

imp pougon
LI: emit move ri, r2

ret

The usual notion of lifetime ranges does not capture this distinction, since the staging being

exploited is not explicit in the source program. For example, computations involving exp and base

are textuall't adjacent but belong to different computation stages. Conventional register allocation

algorithm- may nonetheless be used for deferred compilation by simply modifying the construction

of the interference graph. A standard lifetime analysis can be conducted without regard to the

staging of the program, followed b . an analysis that determines the program stage to which each

variable belongs. During construction of the interference graph, edges are only added between

overlapping lifetime ranges of variables from the same program stage.

3.4.2 Run-Time Register Allocation

Although compile-time register allocation leads to fast run-time code generation, it suffers several

Limitations. mlining and loop unrolling may occur at run time, so an exact interference graph cannot

be constructed at compile time. Also, fixing the register assignment of a function at compile time

makes it difficult to inline in some contexts. For example, registers must be shuffled if the formal

and actual parameters are assigned to different registers, and so forth. If the number of contexts

in which a function will be inlined is small, compile-time code duplication combined with fixed

register assignments can be effective, but in general the space required will be prohibitive.

It is therefore desirable to perform run-time register allocation in some cases. Although reg-

ister allocation can be performed on a run-time intermediate representation of code, the cost of
processing such a representation is likely to pay off only when the generated code is executed many
times. A more efficient strategy is to perform register alloeation at compile time but defer register
susignenl until run time. A static approximation of the interference graph can be constructed as

described in the previous section, and the run-time code generators can be parameterised by some
representation of the desired register mapping. For example, poigen can perform run-time register
assignment as follows:

poigen: boq rt, tO, LI
sub rl. rl. 1
esai Sal rfr3]. r~r3. rfr2]
jip porgen

LI: milt move rzr4]. r~r31
rat

This function takes four arguments: the value of s"p (in rn), the numbers of the registers
assigned to bass and accum (in r2 and r3), and the number of the destination register (in r4).

The emit pseudo-instruction used here determines the operands of the emitted instruction from
the contents of the specified registers. This takes more time than emitting instructions with fixed

7



operands, but the generated code will be more efficient in contexts that would otherwise require

the register ihu!'.ing described above.

The representation of register mappings has a significant impact on the cost of run-time register

assignment. In the above example, register mappings are mzintained in registers throughout early

stages of computation; instructions can be emitted quickly because no memory access is required

to determine their arguments. It remains to be seen whethei this savings will in general justify the

increased register pressure suffered by early computations.

3.5 Specialized Run-Time Code Generators

Performing most of the work of register allocation at compile time can greatly improve the speed of
run-time code generation. Many other conventional optimization and code generation techniques

can be simi!arhy adapted to deferred compilation. This section gives a brief overview of our work

in this area.
We have generalized destination-driven code generation 1DHB90: to produce speLialized run-

time code generators (henceforth sir ply called generators) that do not manipulate any represen-
tation of the source program at ran time. The algorithm is surprisingly straightforward because
it obeys staging annotations rather blindly. As an e-pression is traversed, "early" operations are
cOnverted to machine code that performs the appropriate computation, while "late" operations are
compiled into code that emits the machine instructions that will eventually perform the computa-
t ion.

As the example in Section 2 demonstrates, this simple technique produces highly effective
rAn time, ,ptimizations. These optimizations are more powerful that those found in many template
compilers 'KE19gl , and eliminating the need for run-time processing of an intermediate representa-
-Ion -)r tewnplate can yield much faster code generation. Many conventional peephole optimizations.

,uch aa strength reduction and instruction selection, can easily be incorporated. Fur example, a
generator can avoid enmtting a multiplication involving a value z from an earlier stage if it takes
the time to decermine whether z = I. The increased cost of such run-time optimizations must be
weighed against their benefit; a staging analysis that determines where to aggressively optimize
would facilitate such decisions.

A generator that emits native machine code in a single pus will be faster than one that builds
an intermediate representation, performs analysis and optimixation, and then generates machine

instrictions. However, it can be difficult to produce good quality native code in a single pass.
Branches and procedure calls are problematic because the destination may be code that has not
yet been compiled. Due to run-time mnlinng and loop unroillng the generator -nay not be able to
predict where the target code will eventually be located, so run-time backpatching is necessary.

Span dependent instructions are challenging for similar reasons. Good instruction scheduling is
also diffic-ilt to achieve in a single pass. Although a schedule can be "hard-wired" into generators
for straight-line blocks, scheduling across basic-block boundaries requires more general techniques.

We are also investigating the adaptation of inlinang and loop unrolling algorithms to deferred

compilation. In conventional compilers such techniques yield increased opportunities for optimiza-
tion and improve the amortization of various computations, such as range check-. Our preliminary
work suggests that similar benefits can be obtained by run-time inlining and loop v.nrollirg. It
can be difficult to statically determine where to inline or how far to imroll a loop. Tne use of

run-time infrnnation to guide such desisions may prove to be of significant benefit. We have aug-
mented the compile-time code generator described above with the pa. tial evaluation technique of
unfolding BD91, JGS93!, a form of inlining.

8



1:1 ),orr contexts it is impractical to inline a function N-tt still deý,irable to p .I

upon the results of earlier computations. For example it a function is calle at -nn
rampoints with the same value from an early computation, It mnal be preferai-.,.-~e

sinvle optimized version of the function rather than miriing its bodv at each cal' 'ite tri -~:eoz,

is commonly called ipecialitation 'JSSS9., Special: tation also permits run time o)pr.r7,z. (e -- *...
be reused rather than regenert-ed, which saves both space and time. rhe memniiation -f 7 n
t-_re code generators is a simple way to achieve such reuse. Run-time mnemoiza,;''n :aji ý)
expensive, particularly when memoizing on structured data Mal93 . Neverthetess. pre.ý:;7arv
experim 'ents indicate that It is worthwhile in some applications. The developmen. -ta,,c alit
d n anic strategies for controlling memoization is an interesting open problem.

4 Implementation

We have implemented a prototype compiler called FAoiuss that incorporates many of the deferred
c p-nriatlon strategies described in the previous section, as described below. The priniary6 gtoai
if Ft arts is to reduce the run-time cost of code generation to .rru~niimumn, at the cost of some

degradation in the quality of the generated code and an increase in the size of both the generatmng
anid .he g,,nerated code. This provides a baseline for the evaluation of compilers that perform more
.14gressive ruin-,:me opt imizations.

The Fkarcs source language is a rudimentary, strict, first-order functional language. Integers
in,. pointers to heap-alllocated structures are the only run-time values: FADIUS does not 51uppýort

arravs or a~ssignmentt We have currently limited our attention to two-stage programs, so That e
9 r- cmr of siaging analycis becomies one o)f binding- time analysis 'NN92 . The staging, anailvsis also
ie!-rniines how fi-inction calls should be treated by the code generator. An aggressive heuristic is
;ie~i !o d~etermine whicht function applications should be inlined: function calls in the branches of
.ale conditionals are specialized, but all other calls are inlined 'BD9I>. AU analysis is automatic,

requiri ng no programmer intervention.
AUl register allocation and assignment occurs at compile-time; registers are assigned indepen-

dently to variables in early and late computations. In keeping with the focus on fast run-time code
,loneration, very few optimizations are applied at run time. The primary optimizations are "Con-
stant" propagation, "constant" folding, dead-code elimination, and function mimling. Loops are
expressed as tail-recursive functions, so inlining effectively yields loop unrolling. We have ignored
the issue of instruction scheduling for the moment; we assume an idealized RISC machine with
no delay ilots (see Appendix A). Run-time code generatio.1 -cc'irs in a single pass; no intermedi-
ate repreri'tation is constructed and no analysis or optimizaioN61 is performted on code after it is
generated.

Our preLiminary results are encouraging. As an example we consider vector-matrix rnultiplica-
tioin, which is often used to implement matrix-matrix multiplication and is common in scientific
computing applications. Berlin and Weise have investigated improvements tu ,imilar scientific code
throuigh compile-time application of partial1 evaluation 'tBW9OI. Vector-matrix multiplication is a
prime candidate for ruin-time code generation because tle vector is fixed throughout the computa-

io~n, and the looip that computes the inner product of the vector with a row or column from the

'Qumintus Fabius M1aximus was a Roman general best known for hia defeat of Hannibal in the Second Punic War.
Ill Primary strategy was to delay confrontation; repeated small attacks eventually led to victory without a single
irr~sivv nintlict
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Figure 1: Time to multiply a:. n-vector with an n x n matrix

matrix can be completely unrolled.6 Such optimizations cannot usually be performed at compile

time, howeve±r, because the sizes and contents of the vector and matrix are generally not statically

apparent. The source code for the example is given in Appendix B, along with one of the run-time

code-generators produced by FABIUS.

Figure 1 compares the total execution time of vector-matrix multiplication for varying input

sizes under conventional and deferred compilation. The inp-ts were vectors of length n and square

matrices of dimension n containing pseudo-random integers, and the execution times are given in
machine cycles (see Appendix A). The "conventionally compiled" code was produced by disabling

the FABIUS staging ana'ysis and is of high quality. The dotted line represents the portion of time
spent gen•erating code at run time; this time is included in the total execution time of the code

produced by deferred compilation. As the figure demonstrates, deferred compilation can yield
significant improvement in overall execution time even for small problem sizes. In this case the
cost of run-time code generation was recouped when multiplying a 16 element vector with a 16x 16

matrix. The speedup increases linearly with lI'rger input sizes (ignoring the secondary costs detailed
in Section 5), yielding a speedup of greater than 20% when n = 32.

The amount of dynamically allocated data space was roughly the s.une under conventional
and deferred compilation. However, as expected, we observed a significant increase in code size.

The conventionally compiled code occupied just over 50 words; under deferred compilation the
size of the static code rose to nearly 275 words and the size of the run-time-generated code rose
linearly from 250 words to approximately 800 words as n ranged from 4 to 32. Increases of this

magnitude are to be expected when aggressively inlining, since we are trading space for time, but
it remains to be seen whether such increases are manageable in larger applications. More extensive
experimentation is currently underway.

"The arithmetic operations can also be optimised based on the contents of the vector, which will likely yield
substantial speedups !or computations involving sparse data. The results presented here do not reflect'such improve-

ments, since we have focused on faut run-time code generation at the expense of some run-time optimisations.
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5 Costs of Deferred Compilation

TVie tinie required to optimiz- and generate code at run time bas been our priMary f,)cus, bhlt
the time'-space tradeoff exploited by deferred compilation has son e secondary costs that - ust be
considered in practice.

Code-space reclamation can be a significant cost in programs that pursue aggressive run-tiine

c,.le generation. Conventional garbage collection techniques will likely ,uffice, although .ome new

;trategies may prove profitable bec.aiuse dvnamic.l,. Alocated code objects differ f- om data objert•

in both size and lifetime. Garhage collection might be complicated by the fact that rn -tiew

generated code may contain embedded pointers to other data and code objects: this ran occur if

pointers are inlined like other values during optimization.7

Run-time code generation and modification can interact poorly with modern noemorv l,,er.

archie:; 'KLS92'. Most modern architectures prefetclh instructions intoan instructi,•- cacie ,trd

many do not automatically invalidate cache entries when memory writes occur. C :.- tlel,:-L

may therefore be required wher, dynamically generating or modifying code Kepli. r f- riii.•irrt
of code-space allocation and initialization may simplify amortizing the cost of •-ich operati,,ns.

[",.r example, the instruction cache co,dd be flushed after code-space reclamation. and each newly

allocated cede object could be aligned to a boundary that the instruction prefetch mechanism is

-uaranteed not to h,,ave crossed while executing previousty generated code. thus avoiding the in'ai

idati•on of cached instructions. An architecture with a write buffer or a write-back data cache mxav

require additional work to ensure that recent!y written instructions are f,'tchd prope,-lv.

Another open qestion ;s how run-time code generation affects ,locality. Mem,,rv hierarch:,es

o4fer substantial rewards to programs with highly localized data and instruction acc-ss patterns.

Deferred compilation reduce-s locality by creating numerous opt iryi/ed ,, bl uck i., ',ea .. f .rx,

cutini a more general code block multiple times Run-time inlining can increase code size ,igrufi.

cantly, thus decreasing locality. However, run-time dead-code elimination and E,t her opt imilati,,us

,-,In also reduce code size. Techniques adapted from partial evaluation MogMS may also imnpr,•-"

data locality by reorganizing data structures based on the staging of a program.

6 Deferred Compilation vs. Partial Evaluation

There are strong similarities between deferred compilation and offline partial evaluation )JGS93,

RD911, but some significant differences deserve mention. A partial evaluator can be viewed as a

generalized interpreter that, given a program and a port-on of its input, produces a specialized
residual progam that accepts the remaining input and produces the desired result.

The correctness of a partial evaluator, called m-z for historical reasons [JSS891, is described
by the following equation, which specifies that the result produced by the residual program must
be the same as the result of the original program p when applied to the same inputs ([pj denotes
evaluation of a program p, yielding a function):

[[mizJ(p,d,)Jd; = [pj(dn,d 2 )

Perhaps the most intriguing aspect of partial evaluation is Self.application. If mtz is imple.

mented in the language that it interprets, it can specialize itself to a particular source program p.

"Thew€ embedded pointeri may be difiotilt to locate and update; ror example on the MIPS a constant 32-hit
pointer might be embedded into two instructions that contain 16-bit immediate value,. Instruction reo.denng during
run-time code generation can make the locations of these instructions anpredictable.
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yielding a program that generates a residual program when executed:

jjmizi(m ,p)ld, = [mizi(p,di)

This is the essence of our te('uiques for fast run-time code generation. [mizl(miz,p) is a generuting

eztension that when given the first input value will produce an optimized residual program. A

generating extension is simply a specialized code -enerator, and it can be constructed at compile

time because it does not depend on any run-time data. A further self-application of miz yields the

stand-alone program, commonly called cogen, that performs the construction:

([mu (miz, mir)jp = [mizl(miz,p)

In prac:Ice this approach has not been used to implement automatic run-time code generation.

T"ypicas partial evaluator; Bon93, Condgý are intended for source-to-source program transformation
, 'e Sectiun 3.3) and produce residual programs in Scheme or a similar high-level language. The

generating extensions produced by self-.appLication are therefore implemented in Scheme, and more

,mportant.y, they generate Scheme code when executed. The use of such systems for run-time code
generation would therefore require general-purpose rum-tirne compilation, which is too costly to be
wdely app~cable.

Lmpiementing a self-appLicable partial evaluator that dir !ctly generates machine code would
solve such problems.$ Generating extensions would be direct:' executable and they would generate
naA:ie code when executed. To the best of our knowledge, no such partial evaluator has been
le,crd'ed or implemented Io date. One system that comes clcser than most to this goal is AMIX,

4 Usif-,pplicabie partial evaiuaLc.- for a first-order functional language whose target is an abstract
-:ack machine Hoi88'. AMIX', abstract machine code is a relatively high-level language, however,
uA, :he cost of compiling it to native code at run time would be substantial. The interpretational
overhead present in this compilation camnot be statically elin "nated.

A promising alternative to self-application is the hand-impementation of coge" [BW93j. In fact
ine can view FA3iuq as a hand-imiplemented coget whose target language is RISC machine code.
1niis view is supported by our concentration on two-stage programs and our wholesale adoption
if numerous techniques originally developed for partial eval sators, such as binding time analysis,

un-folding heuristics, and memoited specialization. However, the goals and strategies of FADIuS.
such as one-pa.s native-code generation and static register allocation, dffier from those of any
existing forn-,alation of rogen.

7 Conclusions

We have developed a new approach to compilaion. It provides an alternative to compile-time
* analysis and optimization by deferring aspects of optimiszaion and code gen.ration to run time.

%),Jt,matie staing analysis is employed to detect program stages in which run-time optimization
maYv I)e ')eneficial. Fast run-time optimisation and code generation is achieved by eliminating the
.,vrhead ,,f processing intermediate representations of source programs at run time. Preliminary
-i .-riments with a prototyre compiler are promising, but we find that further experimentation is
reqLrod for a full assssment.

6N.to IbM och. a V WsMI rahmaw aged ae" Ve uwMPSeOMMrI in its ItgeIsa uaf p-
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Appendix A Idealized RLISC

The details provided in this appendix may assist interpretation of the example in Section 2 and the
results presented in Section 4. FABIUS currently generates code for an idealized RISC machine that
closeiv resembles the M.IPS architecture. The primary difference is a lack of delay slots: memory
access, bi rich, and call instructions require only one cycle to complete. The idealized RISC also
supports a richer instruction set. including operations like move, push, and call; procedure linkage
u.ses the stack.

The emit pseudo- instruction is interpreted by our RISC simulator rather than be~ing expanded
by the code generator, which facilitates the investigation of various peephole opt im-izat ions. The
timings described in Section 4 attribute a cost of ,'our cycles and a size of four words to most
omit instractions. O)n the miPS. two cycles would be required to load the 32-hit representation
of a 'Ixed operand initrucrtion into a register. rwo additicnal cycles are required to store the
nistruct~u.a and update a code-,e~menit pointer; the pointer update fills the delay 1,rrt of the store
..str'ic:.o't. The cost of updating the pointer could he amortized over several emits. so we can

reduce the averag~e cost if another instruction is available to til the delay slot. Fast allocation of
c 'tie ipace is a critical requirement. W~e assume a garbage-collected code segment with amortized
,)r ýard-aare-iupqorted overflow chiecking and cache flushing.

.Appendix B Extended Example

rhis ~ ~ ~ ~~' -eto ealste. rMatrix multiplicati-in example presented in Sectio)n 1. Although
Vkvr-s i-vt ,Pt ý,ipp-r!tArrav . a reali sti r''.alriji'on .,rhe benefits of run tirre rmi gotie~".ratIimn
her ) mnalle 'jsnR other data sructures. so we hiave imrp 'emented vectors as linked list$ and matrices

as .. --f er!-rrs in row maPor order:

va-oljt.&Y a. a)
if%:nil then reverse(&. nil)

e.lset I*%4 sTd dotprod(.. car a. all)
in vv-gult(v. cdxr a. cons(prod. a))

lotprid(ott. v2. a)
if wl * all then a
*Is* dotPro4(cdr *11. cdZ V'2. a # cas ci 9 car v2)

The f~knrtione are implemented usinig tail-recursion to reduce proceduire-c"~ overhead; the accu.
,nuiator r-im he viewed as &n explicit encodinq of cal frames, the reversal of whic~h corresponds to
a soquence of procedu~re returns i The code for reverse has been oimitted). sm-stilt computes the
.!ot pr'rý&irt of the specified vector with each row of the Kiven matrix andi accumulates the results
,n a i~st dasprod simlpiy sumis the products of correspmnding elements of two rectors.

F481i! I rreatei memoraed code gtenerators for both vm-mult and dotpred. prvvinr..iv generated
cone fr} 4 part ic1lar vector :5 reused rather than, relgenerated. An Witrdalrun coe: .ator to also
-reateri f-r dotprod. it is .nv"W.kd by the mernossed dotprod generator to gener.. code fc~r its
reciirsivep tail c-all 1comments added11)
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L9: beq rl. rO. LIO ; if vI - ail got. LIO
Id r2. (rl) g x1 - car(vI)

:0 r1. 4(rn) vi - cdr(vt)
"emit Id r3. (US) ; emit "x2 a caz(v2)"
emit 14 T1. 4(fn) ; emit "v2 a cdr(v2)"
emit move r4. (r2] aeit "*tap Exi]"
omit ml r3. r4, r3 ; owit "prod - trp P x2"
emit add r2. r2, r3 ; eLit "a - a + prod"
imp L9 , got* L9

L10i emit move ft. r2 ; oit "reesult a 4"
ret ; return

The first argument vector is supplied in rl. The run-time-generated code expectr the second
argument vector in rl and the accuimulator in r2. If the first argument vector is [1,2,3), the
following code is generated at run time:

id r3, (r1) ; :2 " ca.r(v2)
ld rt. 4(rn) v2 e cdr(v2)
move r4,1 trp ,1

mal r3. r4. r3 prod - tmp o x2

add r2, r2. r3 ;a -a prod
Id r3. (ri)
Id rl. 4(rl) etc.
move r4. 2
Mnl r3, r4, r3
odd r2. r2. r3
id r3. (r1)
14 ft. 4(rl)
move r4. 3
mal r3. r4. r3
add V2, C2. :l
move :t. r2 1 roosult - a
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